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The Interpretation 
of Inductive Probabilities 
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An apparent inconsistency in the inductive logic interpretation of probabilities 
is examined and resolved. 
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In an interesting recent article, ~ Friedman and Shimony (hereafter referred 
to as FS) presented an example which seems to imply an inconsistency in 
the "inductive logic interpretation" of probability theoryJ 2~ According to 
the inductive logic interpretation, probability theory is the formalism for 
inductive reasoning. Any such inconsistency would have serious implications 
for the "information theory approach" to statistical mechanics proposed by 
Jaynes, ~3.4) since this approach appears to require the inductive logic inter- 
pretation of probability theory. FS suggest three possible ways of avoiding 
the inconsistency, but do not ascertain whether one of them will actually 
resolve the difficulty. 

The purpose of this note is to present the apparent inconsistency in a 
more straightforward and more general light, and to discuss its resolution. It 
will first be shown that the example of  FS is a special case of a very general 
phenomenon: the proper resolution of  the difficulty will then be given; finally, 
it will be shown that the resolutions suggested by FS are invalid. 

Consider a repeatable experiment with possible outcomes (on a single 
trial) labeled i (i := 1, 2,..., r). We make the following definitions: 
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B: Background data which describe the experiment and give the possible 
outcomes, and which may give other data relative to single trials. 
However, we assume that the data B are symmetric with respect to 
different trials (i.e., do not distinguish between trials), and that the 
data B make no reference to sequences of trials (i.e., the data B do 
not link the outcome of one trial to the outcome of any other trial). 

f ( i ) :  A random variable (r.v.), i.e., a numerical function of the possible 
outcomes in a single trial. (s) 

f:  The average o f f ( i )  over an infinite sequence of trials, defined by 

n 

f .= lim (l/n) Z ./'(ik) 
k.~l  

where ik represents the outcome of the kth trial. Note t h a t f  is itself a 
r.v. defined on the joint experiment consisting of an infinite sequence 
of trials. 

Dr: The proposition that, in an infinite sequence of trials, f takes on the 
numerical value F. 

Although it is not relevant to the following argument, it is worth noting 
that the probabilities P(i ! BDr) that i will occur on a single trial given B and 
Dr are exponential in the r .v.f( i) ,  (3) since Dr implies the constraint 

~. f(i) P(il BDF) = F 
i = 1  

Thus, Dr is essentially the same as tile data d. of FS. 
The apparent contradiction noted by FS arises from the following 

theorem: 

T h e o r e m .  On the basis of B, D F has probability one when F = ( f )  
and probability zero when F v a ( f ) ,  where ( f )  is defined by 

, ( f )  =: ~ f( i)  P(i l l3) 
i--1 

In other words, the probability density of DF,  given B, is 

p(D~. I B) -= 3(./:. - ( f ) )  

Proof. Since by assumption the data B treat all trials identically and 
independently, Jaynes's maximum-entropy prescription leads to a joint 
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n-trial distribution which is symmetric and uncorrelated (see, for instance, 
p. 78 o f  Ref. 4): 

P(ili 2 "'" i~ i B) h P(ik [ B) 
k - 1  

It is now an clementary consequence o f  probabili ty theory (called the "law 
of  large numbers")  (5~ t h a t f  is concentrated around the single-trial mean ( f )  
in the manner  indicated in the thcorem. 

The apparent  contradiction is now as follows: According to the theorem, 
f =: ( f )  with probabili ty one (on the basis of  B), so it appears that we 
can confidcntly pred ic t f  on the basis o f  B. But this seems absurd:  A mere 
description o f  the experiment cannot  tell us the long-run average o f  every 
r.v. f ( i ) .  

An example will help sharpen the argument  and the apparent  incon- 
sistency. Suppose the experiment is the tossing o f  a single die. Then B is the 
information that the die is a cube, with i spots on the ith side (i = 1 ..... 6). 
On the basis o f  B, we obviously have (using Jaynes 's  approach,  13,~) or simply 
using the s tandard "principle of  insufficient reason ''n-'j~) 

P(i '  B) = 1/6 i -- 1 ..... 6 

The single-trial mean of  the r.v. f ( i )  --- i (the number  o f  spots showing) is 
thcn ( i )  = 3.5. The above theorem tells us that, in an infinite series o f  trials, 
the average value - ]s 3.5 with probabili ty one (on the basis o f  B). But this 
seems absurd. For  instance, the die might be weighted in such a way that only 
even numbers  can occur, in which case an actual measurement  o f  7 might 
yield a value close to i : -  4. 2 Nevertheless, it is still true that, on the basis o f  
the data  B (which do not include any information about  weighting), 7 = 3.5 
with probability one. This seems paradoxical.  

When the difficulty is presented in the above manner  (rather than via the 
somewhat  complicated example o f  FS), it becomes obvious that the apparent  
paradox is due to the usual misunderstanding regarding the interpretation o f  
inductive probabilities: The source o f  the difficulty is that  inductive predic- 
tions (even when they are "certain,"  i.e., true with probabil i ty one) are only 
the best predictions possible on the basis o f  the given data. The predictions 
are not deduced from the data, they are only induced from the data. Thus,  
even if the data are true, the predictions (including even predictions which 
are "certain")  may turn out to be experimentally wrong. In the die example, 

Of course, we cannot actually carry out an infinite number of trials to measure i exactly; 
the best we can do is make a large but finite number of trials in order to approximate ~: 
experimentally. 



192 Arthur Hobson 

there is nothing in the data B which deductively implies i .... 3.5. Nevertheless, 
we can #Tduce (on the basis of B) that 7 = 3.5 with probability one. But this 
inductive conclusion might be wrong, even though B is true: Information 
relevent to the prediction of 7 (for instance, information about weighting of 
the die) might not be included in B, in which case any estimate, even an 
estimate which is "certain," based on B alone is likely to be wrong. To state 
the situation more succinctly, P(X Y) -= 1 does not say that Y implies X 
[although the converse is true: if Yimplies X, then P(X[ Y) -- 1]. 

Thus, the resolution of the difficulty is simply that inductive predictions, 
even when they are "certain," may turn out to be wrong if the data on which 
they were based are incomplete in some important respect. Nevertheless, 
they are still the best predictions available on the basis of  the data. Experi- 
mental evidence E that such predictions are wrong then means that the 
original data B are either incorrect or incomplete in some important respect. 
The new evidence E should then be used (along with B) in making further 
predictions; this is precisely what Jaynes's approach is designed to do. ~3.~) 

Real-life examples of this situation are abundant. For instance, in the 
Stern-Gerlach experiment (where neutral silver atoms are passed through an 
inhomogeneous magnetic field and then allowed to impinge on a screen), if 
the background data B include no information about the quantization of  the 
spin of the valence electron, then we obtain the inductive prediction that, 
with near certainty, the pattern of impact points on the screen will show an 
even apread from top to bottom. Note that this is an inductive, not deductive, 
prediction: The atoms enter the apparatus in "random,"  i.e., unknown, 
orientations, so we cannot use mechanics to deduce the precise pattern from 
precisely known initial conditions. Experimentally, the predicted pattern is 
not observed: Only two small impact points are observed, one at the top and 
the other at the bottom of the previously predicted pattern. Thus one must 
reevaluate the data. This is, in fact, precisely how the quantization of angular 
momentum was discovered. 

Concerning the three resolutions proposed by FS: The above analysis 
shows that the proposition O r (denoted dc by FS) can be well-defined, that 
probabilities P(Dp ] B) are well-defined, and that there is no need to reject or 
restrict any of  the principles of inductive probabilities. Thus, all three pro- 
posed resolutions are invalid. 
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